Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 11: e15576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377790

RESUMO

Odontocetes first appeared in the fossil record by the early Oligocene, and their early evolutionary history can provide clues as to how some of their unique adaptations, such as echolocation, evolved. Here, three new specimens from the early to late Oligocene Pysht Formation are described further increasing our understanding of the richness and diversity of early odontocetes, particularly for the North Pacific. Phylogenetic analysis shows that the new specimens are part of a more inclusive, redefined Simocetidae, which now includes Simocetus rayi, Olympicetus sp. 1, Olympicetus avitus, O. thalassodon sp. nov., and a large unnamed taxon (Simocetidae gen. et sp. A), all part of a North Pacific clade that represents one of the earliest diverging groups of odontocetes. Amongst these, Olympicetus thalassodon sp. nov. represents one of the best known simocetids, offering new information on the cranial and dental morphology of early odontocetes. Furthermore, the inclusion of CCNHM 1000, here considered to represent a neonate of Olympicetus sp., as part of the Simocetidae, suggests that members of this group may not have had the capability of ultrasonic hearing, at least during their early ontogenetic stages. Based on the new specimens, the dentition of simocetids is interpreted as being plesiomorphic, with a tooth count more akin to that of basilosaurids and early toothed mysticetes, while other features of the skull and hyoid suggest various forms of prey acquisition, including raptorial or combined feeding in Olympicetus spp., and suction feeding in Simocetus. Finally, body size estimates show that small to moderately large taxa are present in Simocetidae, with the largest taxon represented by Simocetidae gen. et sp. A with an estimated body length of 3 m, which places it as the largest known simocetid, and amongst the largest Oligocene odontocetes. The new specimens described here add to a growing list of Oligocene marine tetrapods from the North Pacific, further promoting faunistic comparisons across other contemporaneous and younger assemblages, that will allow for an improved understanding of the evolution of marine faunas in the region.


Assuntos
Cetáceos , Classificação , Fósseis , Baleias , Washington , Baleias/anatomia & histologia , Baleias/classificação , Cetáceos/anatomia & histologia , Cetáceos/classificação , Especificidade da Espécie , Fósseis/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Dente/anatomia & histologia
3.
Parasit Vectors ; 14(1): 196, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845871

RESUMO

BACKGROUND: Current data about Pseudaliidae show contrasting patterns of host specificity between congeneric species. We investigated how both contact and compatibility between hosts and parasites contributed to the patterns of lungworm infection observed in a community of five species of cetaceans in the western Mediterranean. METHODS: The lungs of 119 striped dolphins Stenella coeruleoalba, 18 bottlenose dolphins Tursiops truncatus, 7 Risso's dolphins Grampus griseus, 7 long-finned pilot whales Globicephala melas, and 6 common dolphins Delphinus delphis were analysed for lungworms. Parasites were identified by morphology and analysis of ITS2 sequences using both maximum likelihood and Bayesian inference methods. Body length was used as a proxy for lungworm species fitness in different hosts and compared with Kruskal-Wallis tests. Infection parameters were compared between cetacean species using Fisher's exact tests and Kruskal-Wallis tests. Phylogenetic specificity was explored by collating the overall lungworm species prevalence values in hosts from previous surveys in various localities. To explore the relative importance of vertical and horizontal transmission, Spearman's rank correlation was used to look for an association between host size and lungworm burden. A Mantel test was used to explore the association between lungworm species similarity and prey overlap using dietary data. RESULTS: Halocercus delphini had higher infection levels in striped dolphins and common dolphins; Stenurus ovatus had higher infection levels in bottlenose dolphins; and Stenurus globicephalae had higher infection levels in long-finned pilot whales. These results are congruent with findings on a global scale. Morphometric comparison showed that the larger nematodes were found in the same host species that had the highest parasite burden. Lungworms were found in neonatal striped dolphins and a Risso's dolphin, and there was a weak but significant correlation between host size and parasite burden in striped dolphins and bottlenose dolphins. There was also a weak but significant association between prey overlap and lungworm species similarity. CONCLUSIONS: Data indicate that phylogenetic specificity has an important role in governing host-parasite associations, as indicated by the higher infection levels and larger nematode size in certain hosts. However, diet can also influence infection patterns in these preferred hosts and contribute to less severe infections in other hosts.


Assuntos
Cetáceos/parasitologia , Especificidade de Hospedeiro , Metastrongyloidea/fisiologia , Animais , Cetáceos/classificação , Golfinhos/classificação , Golfinhos/parasitologia , Interações Hospedeiro-Parasita , Região do Mediterrâneo , Metastrongyloidea/classificação , Metastrongyloidea/genética , Metastrongyloidea/isolamento & purificação , Filogenia , Baleias/classificação , Baleias/parasitologia
4.
Integr Zool ; 16(4): 462-476, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33733602

RESUMO

Scientific information is vital to the conservation of cetaceans and the management of whale-watching activities. The southern coastal waters of Sri Lanka are near a narrow continental shelf and biologically abundant in cetacean species. Although the occurrence of cetaceans has been investigated in certain waters of Sri Lanka, few surveys have been conducted along the southern coast. To fill this gap, we conducted boat-based surveys from January to May 2017 to investigate the occurrence, diversity, and behavior of cetaceans in the waters off Mirissa, covering a survey area of 788.9 km2 . During 55 survey days, we recorded a total of 242 cetacean sightings and identified at least 9 species (3 mysticetes and 6 odontocetes). The blue whale was the most common mysticete species (167 of 174 mysticete encounters), followed by the Omura's whale (4 of 174) and Bryde's whale (3 of 174). The spinner dolphin was the most common odontocete species (28 of 68 odontocete encounters), followed by the sperm whale (18 of 68), common bottlenose dolphin (13 of 68), short-finned pilot whale (5 of 68), melon-headed whale (2 of 68), and killer whale. Blue whales and sperm whales exhibited a clear preference for outer shelf and high slope areas, and blue whales were observed feeding along these waters. The present study provides near-baseline information on cetacean occurrence and diversity in whale-watching waters off southern Sri Lanka, and highlights the urgent need for proper management strategies for whale-watching activities.


Assuntos
Cetáceos/classificação , Animais , Comportamento Animal , Cetáceos/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Sri Lanka
5.
Parasitol Res ; 120(5): 1699-1711, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33674924

RESUMO

Adult Anisakis Dujardin, 1845 were found in two specimens of killer whale Orcinus orca and one specimen of franciscana Pontoporia blainvillei stranded from off the coast of Buenos Aires Province, Argentina. Genetic identification of the nematodes (N = 144) was performed by sequence analysis of the mitochondrial (mtDNA cox2) and the nuclear (nas 10 nDNA) gene loci. Anisakis pegreffii and Anisakis berlandi were detected in the two individuals of O. orca, while Anisakis typica and A. pegreffii were identified in P. blainvillei. Morphological and morphometric analysis also carried out on adult specimens of A. pegreffii and A. berlandi has allowed to underlining the usefulness of genetic/molecular markers in their recognition. This represents the first record of A. pegreffii in O. orca and P. blainvillei and of A. berlandi in O. orca. This is also the first sympatric and syntopic occurrence, as adults, of A. pegreffii and A. berlandi from the Austral Region of the Atlantic Ocean waters. These results provide insights into the knowledge of the host ranges and geographical distribution of these parasites in the basin waters of the region. Pontoporia blainvillei showed low abundance values of infection with Anisakis spp., which is the general pattern for coastal dolphins in the area, whereas O. orca harboured higher abundance of Anisakis spp. than those previously recorded among cetacean species in the Argentine Sea. Differences in the Anisakis spp. distribution and their parasitic loads, observed among the three host specimens, are discussed in relation to the oceanographic parameters, as well as to the host ecology. The usefulness of genetic/molecular markers in the recognition of adults of the sibling species A. pegreffii and A. berlandi with considerable overlapping in morphometric and morphological characters was underlined. The distribution of Anisakis species from Southwestern Atlantic waters is discussed in relation to their value as indicators for studies on the zoogeography of their hosts at a regional-scale level.


Assuntos
Anisaquíase/veterinária , Anisakis/genética , Cetáceos/parasitologia , Animais , Anisaquíase/parasitologia , Anisakis/classificação , Anisakis/citologia , Anisakis/isolamento & purificação , Argentina , Oceano Atlântico , Cetáceos/classificação , DNA de Helmintos/genética , DNA Mitocondrial/genética , Genes de Helmintos/genética , Especificidade de Hospedeiro
6.
Sci China Life Sci ; 64(1): 1-21, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165812

RESUMO

The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations. We identified genes with relatively high expression in the rumen, of which many appeared to be recruited from other tissues. These genes show functional enrichment in ketone body metabolism, regulation of microbial community, and epithelium absorption, which are the most prominent biological processes involved in rumen innovations. Several modes of genetic change underlying rumen functional innovations were uncovered, including coding mutations, genes newly evolved, and changes of regulatory elements. We validated that the key ketogenesis rate-limiting gene (HMGCS2) with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals. Two newly evolved genes (LYZ1 and DEFB1) are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium. Furthermore, we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment. These results greatly improve our understanding of rumen evolution and organ evo-devo in general.


Assuntos
Adaptação Fisiológica/genética , Camelus/genética , Cetáceos/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Rúmen/metabolismo , Ruminantes/genética , Sequência de Aminoácidos , Animais , Camelus/classificação , Camelus/microbiologia , Cetáceos/classificação , Cetáceos/microbiologia , Análise por Conglomerados , Epitélio/metabolismo , Epitélio/microbiologia , Microbiota , Modelos Genéticos , Filogenia , Rúmen/microbiologia , Ruminantes/classificação , Ruminantes/microbiologia , Homologia de Sequência de Aminoácidos
7.
BMC Evol Biol ; 20(1): 24, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046633

RESUMO

BACKGROUND: Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. RESULTS: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in ß-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. CONCLUSION: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.


Assuntos
Cordados/classificação , Cordados/genética , Evolução Molecular , Especiação Genética , Variação Genética/fisiologia , Animais , Evolução Biológica , Cetáceos/classificação , Cetáceos/genética , Duplicação Gênica/fisiologia , Genes Duplicados , Genoma , Genômica , Filogenia
8.
Syst Biol ; 69(3): 479-501, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633766

RESUMO

The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for $\sim $3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from $>$38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.].


Assuntos
Cetáceos/classificação , Cetáceos/genética , Filogenia , Animais , Biodiversidade , Classificação , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade da Espécie
9.
PLoS One ; 14(10): e0223712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600321

RESUMO

Cetacean stranding records can provide vital information on species richness and diversity through space and time. Here we collate stranding records from Victoria, Australia and assess them for temporal, spatial and demographic trends. Between 1920 and 2016, 424 stranding events involving 907 individuals were recorded across 31 Cetacea species from seven families, including five new species records for the state. Seven of these events were mass strandings, and six mother and calf strandings were recorded. Importantly, 48% of the species recorded are recognised as data deficient on the IUCN Red List. The most commonly recorded taxa were Tursiops spp. (n = 146) and Delphinus delphis (common dolphins, n = 81), with the greatest taxonomic richness (n = 24) and highest incidence of stranding events documented within the Otways mesoscale bioregion. We found no seasonal stranding patterns anywhere in the state. While our findings improve understanding of the spatial and temporal patterns of cetacean diversity within Victoria, we suggest greater effort to collect demographic data at stranding events in order to better study state-wide patterns through time. We conclude with guidelines for minimum data collection standards for future strandings to maximise information capture from each event.


Assuntos
Biodiversidade , Cetáceos/fisiologia , Análise Espaço-Temporal , Envelhecimento/fisiologia , Animais , Cetáceos/classificação , Feminino , Geografia , Lagos , Masculino , Vitória
10.
Rev Bras Parasitol Vet ; 28(3): 395-402, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411314

RESUMO

Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii. In cetaceans, T. gondii infection is a significant cause of morbidity and mortality. Despite the worldwide range and broad cetacean host record of T. gondii infection, there is limited information on toxoplasmosis in cetaceans from the Southern hemisphere. We investigated the occurrence of T. gondii by histopathology and immunohistochemistry in tissue samples of 185 animals comprising 20 different cetacean species from Brazil. Three out of 185 (1.6%) animals presented T. gondii-associated lesions: a captive killer whale Orcinus orca, a free-ranging common bottlenose dolphin Tursiops truncatus and a free-ranging Guiana dolphin Sotalia guianensis. The main lesions observed in these animals were necrotizing hepatitis, adrenalitis and lymphadenitis associated with protozoal cysts or extracellular tachyzoites presenting immunolabeling with anti-T. gondii antibodies. This study widens the spectrum of species and the geographic range of this agent in Brazil, and provides the first reports of T. gondii infection in a captive killer whale and in a free-ranging common bottlenose dolphin in South America.


Assuntos
Anticorpos Antiprotozoários/sangue , Cetáceos/parasitologia , Toxoplasma/imunologia , Toxoplasmose Animal/epidemiologia , Animais , Brasil/epidemiologia , Cetáceos/classificação , Imuno-Histoquímica , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/patologia
11.
Philos Trans R Soc Lond B Biol Sci ; 374(1780): 20180066, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31303160

RESUMO

Cetaceans are fully aquatic predatory mammals that have successfully colonized virtually all marine habitats. Their adaptation to these habitats, so radically different from those of their terrestrial ancestors, can give us comparative insights into the evolution of female roles and kinship in mammalian societies. We provide a review of the diversity of such roles across the Cetacea, which are unified by some key and apparently invariable life-history features. Mothers are uniparous, while paternal care is completely absent as far as we currently know. Maternal input is extensive, lasting months to many years. Hence, female reproductive rates are low, every cetacean calf is a significant investment, and offspring care is central to female fitness. Here strategies diverge, especially between toothed and baleen whales, in terms of mother-calf association and related social structures, which range from ephemeral grouping patterns to stable, multi-level, societies in which social groups are strongly organized around female kinship. Some species exhibit social and/or spatial philopatry in both sexes, a rare phenomenon in vertebrates. Communal care can be vital, especially among deep-diving species, and can be supported by female kinship. Female-based sociality, in its diverse forms, is therefore a prevailing feature of cetacean societies. Beyond the key role in offspring survival, it provides the substrate for significant vertical and horizontal cultural transmission, as well as the only definitive non-human examples of menopause. This article is part of the theme issue 'The evolution of female-biased kinship in humans and other mammals'.


Assuntos
Cetáceos/fisiologia , Comportamento Social , Animais , Comportamento Animal , Evolução Biológica , Cetáceos/classificação , Cetáceos/genética , Feminino , Masculino , Filogenia
12.
Rev. bras. parasitol. vet ; 28(3): 395-402, July-Sept. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1042518

RESUMO

Abstract Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii. In cetaceans, T. gondii infection is a significant cause of morbidity and mortality. Despite the worldwide range and broad cetacean host record of T. gondii infection, there is limited information on toxoplasmosis in cetaceans from the Southern hemisphere. We investigated the occurrence of T. gondii by histopathology and immunohistochemistry in tissue samples of 185 animals comprising 20 different cetacean species from Brazil. Three out of 185 (1.6%) animals presented T. gondii-associated lesions: a captive killer whale Orcinus orca, a free-ranging common bottlenose dolphin Tursiops truncatus and a free-ranging Guiana dolphin Sotalia guianensis. The main lesions observed in these animals were necrotizing hepatitis, adrenalitis and lymphadenitis associated with protozoal cysts or extracellular tachyzoites presenting immunolabeling with anti-T. gondii antibodies. This study widens the spectrum of species and the geographic range of this agent in Brazil, and provides the first reports of T. gondii infection in a captive killer whale and in a free-ranging common bottlenose dolphin in South America.


Resumo Toxoplasmose é uma doença parasitária causada pelo protozoário Toxoplasma gondii. A infecção por T. gondii é uma causa significativa de morbidade e mortalidade, nos cetáceos. Apesar da abrangência mundial e amplo registro de espécies de cetáceos infectadas por T. gondii, informações sobre toxoplasmose em cetáceos do hemisfério sul são limitadas. Neste estudo pesquisou-se por meio de histopatologia e imuno-histoquímica a ocorrência de T. gondii em amostras de tecido de 185 animais, compreendendo 20 diferentes espécies de cetáceos que ocorrem no Brasil. Três dos 185 (1,6%) animais apresentaram lesões associadas a T. gondii: uma orca Orcinus orca mantida em cativeiro, um golfinho-nariz-de-garrafa Tursiops truncatus e um boto-cinza Sotalia guianensis de vida livre. As principais lesões observadas nesses animais foram hepatite, adrenalite e linfadenite necrotizantes associadas a cistos protozoários ou taquizoítos extracelulares, marcados com anticorpos anti-T. gondii. O presente estudo amplia o espectro de espécies susceptíveis a esse agente e o seu alcance geográfico no Brasil, fornecendo o primeiro relato da infecção por T. gondii em uma orca mantida em cativeiro e em um golfinho-nariz-de-garrafa de vida livre na América do Sul.


Assuntos
Animais , Toxoplasma/imunologia , Anticorpos Antiprotozoários , Cetáceos/parasitologia , Toxoplasmose Animal/epidemiologia , Brasil/epidemiologia , Imuno-Histoquímica , Cetáceos/classificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/patologia
13.
Proc Biol Sci ; 286(1902): 20190685, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31064306

RESUMO

Fossil information is essential for estimating species divergence times, and can be integrated into Bayesian phylogenetic inference using the fossilized birth-death (FBD) process. An important aspect of palaeontological data is the uncertainty surrounding specimen ages, which can be handled in different ways during inference. The most common approach is to fix fossil ages to a point estimate within the known age interval. Alternatively, age uncertainty can be incorporated by using priors, and fossil ages are then directly sampled as part of the inference. This study presents a comparison of alternative approaches for handling fossil age uncertainty in analysis using the FBD process. Based on simulations, we find that fixing fossil ages to the midpoint or a random point drawn from within the stratigraphic age range leads to biases in divergence time estimates, while sampling fossil ages leads to estimates that are similar to inferences that employ the correct ages of fossils. Second, we show a comparison using an empirical dataset of extant and fossil cetaceans, which confirms that different methods of handling fossil age uncertainty lead to large differences in estimated node ages. Stratigraphic age uncertainty should thus not be ignored in divergence time estimation and instead should be incorporated explicitly.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Animais , Cetáceos/classificação , Simulação por Computador , Extinção Biológica , Especiação Genética , Paleontologia/métodos , Fatores de Tempo
14.
J Hered ; 110(3): 332-339, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30844043

RESUMO

Cetaceans are a suborder of secondarily adapted aquatic mammals with an enigmatic history involving a transition from land to sea approximately 55 Mya. During the transition period, cetaceans would have faced many new pathogen challenges, but limited information is available about the adaptive immune system of these mammals. The major histocompatibility complex (MHC) family plays a key role in antigen recognition and presentation in adaptive immunity, which is believed to have evolved in response to pathogens. In the present study, MHC class II loci were characterized in 7 published cetacean genome assemblies and the genomic organization of cetaceans was compared with that of their terrestrial relatives, the cow, sheep, and pig. A total of 9 MHC class II loci were identified in the cetacean genomes: DRA, DRB, DQA, DQB, DPB, DOA, DOB, DMA, and DMB. Sequences from 8 of the 9 genes included intact coding regions and were presumably functional. The organization of the MHC class II loci was conserved across the examined mammalian species, whereas the orientation and number of the alpha and beta genes varied among the species. The phylogenetic reconstruction of all MHC genes from Cetartiodactyla suggested that alpha and beta genes had different topologies. Additionally, based on a phylogenetic reconstruction of the multi-locus DRB, 2 (DRB1 and DRB2) of the 4 putative gene copies were hypothesized to have duplicated and evolved during the radiation of cetaceans.


Assuntos
Cetáceos/classificação , Cetáceos/genética , Genes MHC da Classe II , Loci Gênicos , Genoma , Genômica , Filogenia , Animais , Genômica/métodos
15.
Sci Total Environ ; 648: 772-778, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30138876

RESUMO

Attention directed at different species by society and science is particularly relevant within the field of conservation, as societal preferences will strongly impact support for conservation initiatives and their success. Here, we assess the association between societal and research interests in four charismatic and threatened species groups, derived from a range of different online sources and social media platforms as well as scientific publications. We found a high level of concordance between scientific and societal taxonomic attention, which was consistent among assessed species groups and media sources. Results indicate that research is apparently not as disconnected from the interests of society as it is often reproached, and that societal support for current research objectives should be adequate. While the high degree of similarity between scientific and societal interest is both striking and satisfying, the dissimilarities are also interesting, as new scientific findings may constitute a constant source of novel interest for the society. In that respect, additional efforts will be necessary to draw scientific and societal focus towards less charismatic species that are in urgent need of research and conservation attention.


Assuntos
Biodiversidade , Classificação/métodos , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Animais , Caniformia/classificação , Carnívoros/classificação , Cetáceos/classificação , Primatas/classificação , Aves Predatórias/classificação
16.
Nat Commun ; 9(1): 5237, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30532040

RESUMO

Measuring the pace at which speciation and extinction occur is fundamental to understanding the origin and evolution of biodiversity. Both the fossil record and molecular phylogenies of living species can provide independent estimates of speciation and extinction rates, but often produce strikingly divergent results. Despite its implications, the theoretical reasons for this discrepancy remain unknown. Here, we reveal a conceptual and methodological basis able to reconcile palaeontological and molecular evidence: discrepancies are driven by different implicit assumptions about the processes of speciation and species evolution in palaeontological and neontological analyses. We present the "birth-death chronospecies" model that clarifies the definition of speciation and extinction processes allowing for a coherent joint analysis of fossil and phylogenetic data. Using simulations and empirical analyses we demonstrate not only that this model explains much of the apparent incongruence between fossils and phylogenies, but that differences in rate estimates are actually informative about the prevalence of different speciation modes.


Assuntos
Extinção Biológica , Fósseis , Especiação Genética , Paleontologia/métodos , Algoritmos , Animais , Cetáceos/classificação , Cetáceos/genética , Evolução Molecular , Modelos Genéticos , Filogenia
17.
Mar Genomics ; 41: 1-5, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30154054

RESUMO

The order of Cetacea with 88 species including Odontoceti (or toothed whales) and Mysticeti (or baleen whales) is the most specialized and diversified group of mammals. The blue whale with a maximum recorded length of 29.9 m for 173 t of weight is the largest animal known to have ever existed, and any dolphin's brain is most powerful and complex than any other brain in the animal kingdom, second only to primate's. Nevertheless, Cetacea are mammals that re-entered the oceans only a little over 50 million years ago, a relatively short time on the evolutionary scale. During this time cetaceans and humans have developed marked morphological and behavioral differences, yet their genomes show a high level of similarity. This present review is focused on the description and significance of newly accessible cetacean genome tools and information, and their relevance in the study of the evolution of successful phenotypic adaptations associated to mammal's marine existence, and their applicability to the unresolved disease mechanisms in humans.


Assuntos
Evolução Biológica , Cetáceos/classificação , Genoma , Animais , Cetáceos/genética , Filogenia
18.
Science ; 361(6402): 591-594, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093596

RESUMO

Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species' blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors' lipid metabolism and/or bloodstream oxidative environment affecting PON1's role in fatty acid oxidation. PON1 loss also eliminates marine mammals' main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environments.


Assuntos
Arildialquilfosfatase/sangue , Arildialquilfosfatase/genética , Cetáceos , Evolução Molecular , Metabolismo dos Lipídeos , Desentoxicação Metabólica Fase I , Compostos Organofosforados/metabolismo , Adaptação Biológica , Animais , Cetáceos/sangue , Cetáceos/classificação , Cetáceos/genética , Exposição Ambiental , Aptidão Genética , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Compostos Organofosforados/toxicidade , Oxirredução , Filogenia , Risco , Seleção Genética
19.
Genome Biol Evol ; 9(11): 3179-3188, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145610

RESUMO

Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes.


Assuntos
Ecossistema , Evolução Molecular , Calicreínas/genética , Mamíferos/fisiologia , Serina Endopeptidases/genética , Animais , Evolução Biológica , Encéfalo/metabolismo , Cetáceos/classificação , Cetáceos/genética , Cetáceos/fisiologia , Pleiotropia Genética , Mamíferos/classificação , Mamíferos/genética , Pele/metabolismo
20.
Bull Math Biol ; 79(10): 2334-2355, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28819749

RESUMO

The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.


Assuntos
Evolução Biológica , Modelos Biológicos , Algoritmos , Animais , Tamanho Corporal , Cetáceos/anatomia & histologia , Cetáceos/classificação , Modelos Lineares , Conceitos Matemáticos , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...